Abstract

From the perspective of reducing the sampling cost of color images at high resolution, block-based compressive sensing (CS) has attracted considerable attention as a promising alternative to conventional Nyquist/Shannon sampling. On the other hand, for storing/transmitting applications, CS requires a very efficient way of representing the measurement data in terms of data volume. This paper addresses this problem by developing a measurement-coding method with the proposed customized Huffman coding. In addition, by noting the difference in visual importance between the luma and chroma channels, this paper proposes measurement coding in YCbCr space rather than in conventional RGB color space for better rate allocation. Furthermore, as the proper use of the image property in pursuing smoothness improves the CS recovery, this paper proposes the integration of a low pass filter to the CS recovery of color images, which is the block-based -norm minimization. The proposed coding scheme l<SUB>20</SUB> shows considerable gain compared to conventional measurement coding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call