Abstract
We present a Bayesian model for multi-resolution component separation for cosmic microwave background (CMB) applications based on Wiener filtering and/or computation of constrained realizations, extending a previously developed framework. We also develop an efficient solver for the corresponding linear system for the associated signal amplitudes. The core of this new solver is an efficient preconditioner based on the pseudo-inverse of the coefficient matrix of the linear system. In the full sky coverage case, the method gives an increased speed of the preconditioner, and it is easier to implement in terms of practical computer code. In the case where a mask is applied and prior-driven constrained realization is sought within the mask, this is the first time full convergence has been achieved at the full resolution of the Planck data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.