Abstract

Identifying unknown types of diseases is a crucial step in preceding retinal imaging classification for the sake of safety, which is known as anomaly detection of retinal imaging. However, the widely-used supervised learning algorithms are not suitable for this problem, since the data of the unknown category is unobtainable. Moreover, for retinal imaging with different types of anomalous regions, using a single-resolution input causes information loss. Therefore, we propose an unsupervised auto-encoder model with multi-resolution inputs and outputs. We provide a theoretical understanding of the effectiveness of reconstruction error and the improvement of self-supervised learning for anomaly detection. Our experiments on two widely-used retinal imaging datasets show that the proposed methods are superior to other methods, and further experiments verify the validity of each part of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.