Abstract

The last 2 years multi-compound methods are gaining ground as screening methods. In this study a high-resolution liquid chromatography combined with time-of-flight mass spectrometry (HRLC–ToF-MS) is tested for the screening of about 100 veterinary drugs in three matrices, meat, fish and egg. While the results are satisfactory for 70–90% of the veterinary drugs, a more efficient sample preparation or extract purification is required for quantitative analysis of all analytes in more difficult matrices like egg. The average mass measurement error of the ToF-MS for the veterinary drugs spiked at concentrations ranging from 4 to 400 μg/kg, is 3.0 ppm (median 2.5 ppm) with little difference between the three matrices, but slightly decreases with increasing concentration. The SigmaFit value, a new feature for isotope pattern matching, also decreases with increasing concentration and, in addition, shows an increase with increasing matrix complexity. While the average SigmaFit value is 0.04, the median is 0.01 indicating some high individual deviations. As with the mass measurement error, the highest deviations are found in those regions of the chromatogram where most compounds elute from the column, be it analytes or matrix compounds. The median repeatability of the method ranges from 8% to 15%, decreasing with increasing concentration, while the median reproducibility ranges from 15% to 20% with little difference between matrices and concentrations. The median accuracy is in between 70% and 100% with a few compounds showing higher values due to matrix interference. The squared regression coefficient is >0.99 for 92% of the compounds showing a good overall linearity for most compounds. The detection capability, CCβ, is within 2 times the associated validation level for >90% of the compounds studied. By changing a few conditions in the analyses protocol and analysing a number of blank samples, it was determined that the method is robust as well as specific. Finally, an alternative validation strategy is proposed and tested for screening methods. While the results calculated for repeatability, within-lab reproducibility and CCβ show a good comparison for the matrices meat and fish, and a reasonable comparison for the matrix egg, only 27 analyses are required to obtain these results versus 63 analysis in the traditional, 2002/657/EC, approach. This alternative is suggested as a cost-effective validation procedure for screening methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call