Abstract

In this study a computational method of the multi-reference VCA (virtual crystal approximation) pseudo-potential generation is presented. This is an extension of that proposed by Ramer and Rappe (2000), the scheme of which is in want of the explicit incorporation of semi-core states. To compensate this drawback, a kind of fine tuning is applied to the non-multi-reference VCA pseudo-potential; the form of the pseudo-potential is slightly modified within the cut-off radius in order that the agreements between the pseudo-potential and all-electron calculations are guaranteed both for semi-core and valence states. The improvement in the present work is validated by atomic and crystalline test calculations for the transferability and the lattice constant estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.