Abstract

MapReduce has recently emerged as a new paradigm for large-scale data analysis due to its high scalability, fine-grained fault tolerance and easy programming model. Since different jobs often share similar work (e.g., several jobs scan the same input file or produce the same map output), there are many opportunities to optimize the performance for a batch of jobs. In this paper, we propose two new techniques for multi-job optimization in the MapReduce framework. The first is a generalized grouping technique (which generalizes the recently proposed MRShare technique) that merges multiple jobs into a single job thereby enabling the merged jobs to share both the scan of the input file as well as the communication of the common map output. The second is a materialization technique that enables multiple jobs to share both the scan of the input file as well as the communication of the common map output via partial materialization of the map output of some jobs (in the map and/or reduce phase). Our second contribution is the proposal of a new optimization algorithm that given an input batch of jobs, produces an optimal plan by a judicious partitioning of the jobs into groups and an optimal assignment of the processing technique to each group. Our experimental results on Hadoop demonstrate that our new approach significantly outperforms the state-of-the-art technique, MRShare, by up to 107%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.