Abstract
For N≥2, an N-qubit doily is a doily living in the N-qubit symplectic polar space. These doilies are related to operator-based proofs of quantum contextuality. Following and extending the strategy of Saniga et al. (Mathematics 9 (2021) 2272) that focused exclusively on three-qubit doilies, we first bring forth several formulas giving the number of both linear and quadratic doilies for any N>2. Then we present an effective algorithm for the generation of all N-qubit doilies. Using this algorithm for N=4 and N=5, we provide a classification of N-qubit doilies in terms of types of observables they feature and number of negative lines they are endowed with. We also list several distinguished findings about N-qubit doilies that are absent in the three-qubit case, point out a couple of specific features exhibited by linear doilies and outline some prospective extensions of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.