Abstract

Solid/liquid interfaces are exploited in various industrial applications because confinement strongly modifies the physico-chemical properties of bulk fluids. In that context, investigating the dynamical properties of confined fluids is crucial to identify and better understand the key factors responsible for their behavior and to optimize their structural and dynamical properties. For that purpose, we have developed multi-quanta spin-locking nuclear magnetic resonance relaxometry of quadrupolar nuclei in order to fill the gap between the time-scales accessible by classical procedures (like dielectric relaxation, inelastic and quasi-elastic neutron scattering) and obtain otherwise unattainable dynamical information. This work focuses on the use of quadrupolar nuclei (like 2H, 7Li and 133Cs), because quadrupolar isotopes are the most abundant NMR probes in the periodic table. Clay sediments are the confining media selected for this study because they are ubiquitous materials implied in numerous industrial applications (ionic exchange, pollutant absorption, drilling, waste storing, cracking and heterogeneous catalysis).

Highlights

  • In the last few decades, numerous experimental [1] and theoretical [2] studies have been devoted to solid/liquid interfaces in order to understand and predict the influence of confinement on the structural, thermodynamical and dynamical properties of fluids

  • Natural and synthetic clays are used in a large variety of industrial applications, exploiting their various physico-chemical properties

  • Optimizing applications such as heterogeneous catalysis and waste storing requires quantifying the mobility of solvent molecules and neutralizing counterions inside the porous network of clay minerals

Read more

Summary

Introduction

In the last few decades, numerous experimental [1] and theoretical [2] studies have been devoted to solid/liquid interfaces in order to understand and predict the influence of confinement on the structural, thermodynamical and dynamical properties of fluids. The mobility of neutralizing counterions is difficult to measure by neutron scattering experiments, and the presence of paramagnetic impurities within the solid network significantly enhances the NMR relaxation rates of confined fluids, strongly limiting the use of pulsed gradient spin echo NMR spectroscopy. We have used multi-quanta spin-locking NMR relaxometry measurements to determine the average residence time of the water molecules and some neutralizing counterions within the interlamellar space between the clay platelets inside each micro-domain. Two-time stimulated echo NMR spectroscopy [59] was used to quantify the time-scale required by the water molecules to probe micro-domains with different orientations [52,53,60] In addition to these experimental investigations, multi-scale numerical simulations were performed to determine the structure of the confined fluids and their mobility. A set of macroscopic differential equations [60] were solved to describe the exchange of the water molecules between differently-oriented micro-domains in order to interpret the echo attenuation detected by two-time stimulated echo NMR spectroscopy

Sample Preparation and Experimental Setup
L Y Clay film L
NMR Spectra
Multi-Quanta NMR Relaxation Rates
Multi-Quanta Spin-Locking NMR Relaxometry
Two-Time Stimulated Echo Attenuation
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.