Abstract

A robust, inexpensive and versatile capillary electrophoresis (CE) system for routine and rapid analysis is reported, which consists of a rugged cartridge holding a 20-μm i.d. 15-cm long capillary, and an inexpensive, universal and sensitive concentration gradient detector. The design of the cartridge simplifies the sample introduction process and makes it possible to perform many separation modes, including moving boundary capillary electrophoresis (MBCE), capillary zone electrophoresis (CZE), capillary isotachophoresis (CITP) and capillary isoelectric focusing (CIEF), on the same system. This arrangement provides more information about a sample's components since analytes can be separated by different modes performed on the same CE system. The detector only consists of a low-power HeNe laser, or laser diode, and a photodiode position sensor. Amino acids and proteins of 10 −6–10 −3 M concentration can be separated by different capillary electrophoretic modes, and detected directly by the detector. The universal detector shows particularly good sensitivity when applied to CE separation modes having self-concentration and focusing effects. Femtomoles of proteins were separated and detected with CIEF. In addition, a short and narrow capillary allows use of high electrical fields which facilitate rapid separations. Four amino acids at millimolar concentrations were fully separated and detected in less than 80 sec by the MBCE mode when a high electric field was applied. The physical size of the whole system is much smaller than that of conventional CE instruments with UV absorbance or fluorescence detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.