Abstract
In this work, bimodal Cu nano-inks composed of two different sizes of Cu nanoparticles (NPs) (40 and 100 nm in diameter) were successfully sintered with a multi-pulse flashlight sintering technique. Bimodal Cu nano-inks were fabricated and printed with various mixing ratios and subsequently sintered by a flash light sintering method. The effects of the flashlight sintering conditions, including irradiation energy and pulse number, were investigated to optimize the sintering conditions. A detailed mechanism of the sintering of bimodal Cu nano-ink was also studied via real-time resistance measurement during the sintering process. The sintered Cu nano-ink films were characterized using x-ray photoelectron spectroscopy and scanning electron microscopy. From these results, it was found that the optimal ratio of 40–100 nm NPs was found to be 25:75 wt%, and the optimal multi-pulse flash light sintering condition (irradiation energy: 6 J cm−2, and pulse duration: 1 ms, off-time: 4 ms, and pulse number: 5) was found. The optimally sintered Cu nano-ink film exhibited the lowest resistivity of 5.68 μΩ cm and 5B adhesion level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.