Abstract

The physical–chemical composition of multiple biomasses can be predicted from one single calibration model instead of compositional prediction conducted by individual models. In this work, multi-product models, involving banana, coffee and coconut samples were built by partial least square regression (PLS) for ten different chemical constituents (total lignin, klason lignin, acid insoluble lignin, acid soluble lignin, extractives, moisture, ash, glucose, xylose and total sugars). The developed PLS models show satisfactory results, with relative error (RE%) less than 20.00, except for ash and xylose models; ratio performance deviation (RPD) values above 4.4 and range error ratio (RER) values above 4.00. This means that all models are qualified for screening calibration. Principal component analysis (PCA) was useful to demonstrate the possibility and the rationale for combining three biomass residues into one calibration model. The results have shown the potential of NIR in combination with chemometrics to quantify the chemical composition of feedstocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.