Abstract

AbstractFor the numerical inversion of Laplace transforms we suggest to use multi‐precision computing with the level of precision determined by the algorithm. We present two such procedures. The Gaver–Wynn–Rho (GWR) algorithm is based on a special sequence acceleration of the Gaver functionals and requires the evaluation of the transform only on the real line. The fixed Talbot (FT) method is based on the deformation of the contour of the Bromwich inversion integral and requires complex arithmetic. Both GWR and FT have only one free parameter: M, which is the number of terms in the summation. Both algorithms provide increasing accuracy as M increases and can be realized in a few lines using current Computer Algebra Systems. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.