Abstract

In this study, two new techniques are proposed for accelerating the multi-point optimization of an airfoil shape by genetic algorithms. In such multi-point evolutionary optimization, the objective function has to be evaluated several times more than a single-point optimization. Thus, excessive computational time is crucial in these problems particularly, when computational fluid dynamics is used for fitness function evaluation. Two new techniques of preadaptive range operator and adaptive mutation rate are proposed. An unstructured grid Navier–Stokes flow solver with a two-equation [Formula: see text] turbulence model is used to evaluate the objective function. The new methods are applied for optimum design of a transonic airfoil at two speed conditions. The results show that using the new methods can increase the aerodynamic efficiency of optimum airfoil at each operating condition with about 30% less computational time in comparison with the conventional genetic algorithm approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.