Abstract
We study a new stochastic multi-player multi-armed bandits (MP-MAB) problem, where the reward distribution changes if a collision occurs on the arm. Existing literature always assumes a zero reward for involved players if collision happens, but for applications such as cognitive radio, the more realistic scenario is that collision reduces the mean reward but not necessarily to zero. We focus on the more practical no-sensing setting where players do not perceive collisions directly, and propose the Error-Correction Collision Communication (EC3) algorithm that models implicit communication as a reliable communication over noisy channel problem, for which random coding error exponent is used to establish the optimal regret that no communication protocol can beat. Finally, optimizing the tradeoff between code length and decoding error rate leads to a regret that approaches the centralized MP-MAB regret, which represents a natural lower bound. Experiments with practical error-correction codes on both synthetic and real-world datasets demonstrate the superiority of EC3. In particular, the results show that the choice of coding schemes has a profound impact on the regret performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.