Abstract

This study presents a multi-platform simulation method for performance assessment of reinforced concrete (RC) structures subjected to impact loading. The method is demonstrated through the integration of two finite element analysis packages, LS-DYNA and VecTor2, to take advantage of the explicit integration scheme and various contact types in LS-DYNA for impact analysis and the Modified Compression Field Theory (MCFT) in VecTor2 for reliable modelling of concrete structures, especially for shear-related failure. The communication between the two programs is enabled through a standardized communication protocol which allows data exchange during the simulation in a seamless manner. When applying this method to vehicle/ship collision analysis, one major challenge is the modelling of the impact interface between the three-dimensional LS-DYNA model and the two-dimensional VecTor2 model. Therefore, a coupling method for models with different dimensions is proposed and also justified through a few verification examples. The method is also applied to a vehicle-bridge head-on collision problem and it is found that the conventional modelling method based on a single LS-DYNA model could overestimate the crashworthiness of the RC structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call