Abstract

Computational predictions concerning ballooning of multiple fuel pins during a loss of coolant accident (LOCA) with a final reflood phase are now more than ever of interest amongst the design basis accidents in pressurized water reactors (PWR). Difficulties for such studies are twofold. Firstly, modeling has to take into account many coupled phenomena as thermics (heat generation, radiation, convection and conduction), hydraulics (multi-dimensional one-to-three phase flow and shrinkage) and mechanics (thermal expansion, creep and embrittlement) but also chemistry (oxidation, hydriding, etc.). Secondly, there exists only a few experimental investigations to validate the complex coupled modeling enabling such predictions. This paper deals with the new computational 3D tool named DRACCAR which models the deformations of rods within a bundle (from one rod to a full fuel assembly) during LOCA transients including the water reflood phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.