Abstract
This paper provides new insight on the simulation of blade-tip/casing rubbing events within aircraft engines accounting for thermomechanical effects within the casing. A multi-physics numerical strategy is presented in order to simulate an interaction experimentally witnessed on a full-scale low-pressure compressor. Experimental data are used for an accurate representation of the blade's incursion depth within the abradable coating. This numerical strategy combines Safran's in-house tool for rotor/stator interaction simulations with a finite element based thermomechanical analysis carried out with Ansys. This work underlines the distinct contributions of both dynamical and thermomechanical phenomena in the simulated interaction. Competition between wear and thermal expansions is investigated as well as their consequences on blade dynamics. The proposed numerical strategy yields an accurate description of the interaction phenomenon as wear patterns, critical speed, amplitude growth rate of the blade vibration and temperature levels may be predicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.