Abstract

While experimental work has shown promising results regarding control of additive manufacturing metal grain structure, the effects of processing parameters on the grain structure is difficult to understand and predict from experiment alone. To this end, a modeling framework is developed which sequentially couples a macro-scale, semi-analytic thermal model, and a meso-scale, cellular automata-based microstructure model. This framework is applied to electron beam additive manufacturing of Inconel 718 using a complex spot scan pattern. The model shows that, with the same scan pattern, variations in the spot time and electron-beam current produce thermal histories with significant spatial and temporal differences, which then produce complex solidification conditions from the interplay between molten pools in the same layer and subsequent layers, resulting in vastly different grain structures. It is noted that the framework can significantly reduce the computational expenses for coupled thermal-metallurgical problems, and has the potential to be used for component level problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.