Abstract

Methane is regarded as one of the ideal fuels for solid oxide fuel cells (SOFCs) due to its huge reserves and transportation properties. In this study, a 3D numerical model coupling with chemical reaction, electrochemical reaction, mass transfer, charge transfer, and heat transfer is developed to understand the heat and mass transfer processes of methane steam direct internal reforming based on double-sided cathodes (DSC) SOFC. After the model verification, the parametric simulations are performed to study the effects of operating voltage, inlet temperature, and steam to carbon (S/C) ratio on the performance of a DSC. It is found that the non-uniform distribution of flow rate among channels results in the non-uniform distribution of each physical field. Increasing the inlet temperature significantly enhances the performance of DSC, however, when the temperature is above 1073 K, the concentration loss and the temperature gradient of DSC increase, which is not conducive to the long-term operation of the DSC. In addition, we revealed the effect of the S/C ratios on the heat and mass transfer process. This study provides an insight into the heat and mass transfer process of SOFC with a mixture of steam and methane and operating conditions for enhancing the performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.