Abstract
Titanium alloys are considered difficult-to-cut materials due to their low machinability. Understanding the physical mechanisms occurring during cutting titanium alloys is of particular interest to improve their machinability. Experimental and numerical investigations on Ti-6Al-4V alloy machining are proposed in this paper. Orthogonal cutting tests are performed. The chip microstructure is characterized using SEM observations coupled with the EBSD technique to reveal the deformation mechanisms occurring inside the microstructure. Based on these microscale observations, a new hybrid flow stress model considering the link between the microstructure and damage evolutions is proposed. The model was implemented FE code to simulate the cutting process. The morphology of generated chips and microstructural parameters were deeply analyzed and compared with experimental data. The effect of the dynamic recrystallization phenomenon and its interaction with damage on the cutting process was discussed. The model can be applied for machining simulations of Ti-6Al-4V and other titanium alloys to better choose adequate cutting conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.