Abstract

Imaging small structures substantially below the tissue surface in living specimens poses special challenges mainly because light is scattered by ever present refractive index inhomogeneities. Confocal microscoy removes the blurring caused by scattered and out-of-focus light but does so only at the expense of photodynamic damage that is often unacceptable when observing live specimens.Multi-photon absorption microscopy[l] solves these problems because excitation is virtually limited to the focal plane. Out-of-focus photobleaching and photodamage are therefore eliminated. In scattering samples substantial improvements accrue even for the focal plane because, different from confocal microscopy, where only ballistic fluorescenc photons can be used, in the multi-photon microscope scattered photons can be utilized in addition [2-4], provided whole-field detection is used[5].Many questions in the study of the nervous system require the investigation of intact portions of neural tissue in order to preserve the multiply branched processes of neurons, often extending over hundreds of microns, together with the local nervous circuitry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.