Abstract
In this work, a novel multi-phase modified shuffled frog leaping algorithm (MPMSFLA) framework is presented to solve the multi-depot vehicle routing problem (MDVRP) more quickly. The presented algorithm adopts the K-means algorithm to execute the clustering analyses for all customers, generates a frog population according to the result of the clustering analyses, and then proceeds to the three-phase process. In the first phase, a cluster MSFLA local search is carried out for each cluster. In the second phase, the algorithm selects good individuals through a binary tournament to construct a new population and then performs a global optimization for all customers and depots using the global MSFLA. In the third phase, a cluster adjustment is implemented for the population to generate new clusters. These procedures continue until the convergence criterion is satisfied. The experimental results show that our algorithm can achieve a high quality solution within a short runtime for the MDVRP, the MDVRP with time windows (MDVRPTW) and the capacitated vehicle routing problem (CVRP). The proposed algorithm is suitable for solving large-scale problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.