Abstract

Friction stir welding (FSW) has the capacity to join the Al/Ti dissimilar structures with superior mechanical properties. The microstructures and mechanical characteristics of Al/Ti dissimilar FSW joints are determined by the heat and mass transfer during the welding process. However, a quantitative study of the Al/Ti dissimilar FSW process is lacking. Therefore, using the computational fluid dynamics (CFD) and volume of fluid (VOF) approach, a multi-phase model was constructed for quantitatively analyzing the heat and mass transfer behaviour in dissimilar FSW of TC4 titanium alloy and AA2024-T4 aluminium alloy. The mixed material was treated as a functionally graded material (FGM) to compute the thermophysical characteristics at the weld nugget zone (WNZ). Due to the vast disparity in the thermophysical characteristics of aluminium and titanium alloy, the temperature field in Al/Ti dissimilar FSW was severely asymmetric. The temperature of titanium alloy on the advancing side (AS) was higher than that of aluminium alloy on the retreating side (RS) at the same distance from the tool centre line near the tool shoulder, but it was lower than that of aluminium alloy on the RS without the influence of the shoulder. Due to the high flow stress of titanium alloy, plastic material flow mostly occurred on the RS of aluminium alloy in the Al/Ti dissimilar FSW, with its percentage exceeding 80 %. This model was validated by experiment results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call