Abstract

The use of finite-state model-predictive controllers for current control of multi-phase machines is investigated. The basic setup is comprised a predictive model and an exhaustive optimizer that minimizes a predefined cost function for the next sampling period. The output of the predictive controller is a vector of gating signals to be applied to a voltage source inverter. The inverter can accommodate just a finite number of configurations and hence the name of finite-state. The use of predictive controllers, already proposed for three-phase drives, is applied here to multi-phase drives. Some implementation issues are discussed along, including the choice of the cost function, the switching frequencies applied to the inverter and the computation time needed for optimization. Simulation and experimental results are provided illustrating various aspects of the control scheme using an asymmetrical dual three-phase AC motor drive as a test bed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.