Abstract
ObjectiveThe conventional single-person brain–computer interface (BCI) systems have some intrinsic deficiencies such as low signal-to-noise ratio, distinct individual differences, and volatile experimental effect. To solve these problems, a centralized steady-state visually evoked potential collaborative BCI system (SSVEP-cBCI), which characterizes multi-person electroencephalography (EEG) feature fusion was constructed in this paper. Furthermore, three different feature fusion methods compatible with this new system were developed and applied to EEG classification, and a comparative analysis of their classification accuracy was performed with transfer learning-based convolutional neural network (TL-CNN) approach.ApproachAn EEG-based SSVEP-cBCI system was set up to merge different individuals’ EEG features stimulated by the instructions for the same task, and three feature fusion methods were adopted, namely parallel connection, serial connection, and multi-person averaging. The fused features were then input into CNN for classification. Additionally, transfer learning (TL) was applied first to a Tsinghua University (THU) benchmark dataset, and then to a collected dataset, so as to meet the CNN training requirement with a much smaller size of collected dataset and increase the classification accuracy. Ten subjects were recruited for data collection, and both datasets were used to gauge the three fusion algorithms’ performance.Main resultsThe results predicted by TL-CNN approach in single-person mode and in multi-person mode with the three feature fusion methods were compared. The experimental results show that each multi-person mode is superior to single-person mode. Within the 3 s time window, the classification accuracy of the single-person CNN is only 90.6%, while the same measure of the two-person parallel connection fusion method can reach 96.6%, achieving better classification effect.SignificanceThe results show that the three multi-person feature fusion methods and the deep learning classification algorithm based on TL-CNN can effectively improve the SSVEP-cBCI classification performance. The feature fusion method of multi -person parallel feature connection achieves better classification results. Different feature fusion methods can be selected in different application scenarios to further optimize cBCI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.