Abstract

In recent years, deep learning has been successfully applied to medical image segmentation. However, as the network extends deeper, the consecutive downsampling operations will lead to more loss of spatial information. In addition, the limited data and diverse targets increase the difficulty for medical image segmentation. To address these issues, we propose a multi-path connected network (MCNet) for medical segmentation problems. It integrates multiple paths generated by pyramid pooling into the encoding phase to preserve semantic information and spatial details. We utilize multi-scale feature extractor block (MFE block) in the encoder to obtain large and multi-scale receptive fields. We evaluated MCNet on three medical datasets with different image modalities. The experimental results show that our method achieves better performance than the state-of-the-art approaches. Our model has strong feature learning ability and is robust to capture different scale targets. It can achieve satisfactory results while using only 0.98 million (M) parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.