Abstract

Cellular structures have recently been received a tremendous growth in discussions and applications in the engineering due to their several fascinating structural properties, such as the ultra-lightweight, high stiffness and crashworthiness. However, the discussions on the design of cellular structures in the complex structural domain with the non-conforming mesh are still unavailable, resulting from the fact that the non-conforming mesh causes several difficulties in numerical analysis and design optimization. Hence, the main purpose of the work is to propose a Multi-Patch Isogeometric Topology Optimization (MP-ITO) method with powerful capabilities for periodic or graded cellular structures. Firstly, the Nitsche’s method is applied to couple non-conforming meshes in multiple NURBS patches and conduct multi-patch isogeometric analysis. Secondly, a multi-patch topology description model is developed, in which a local smoothing mechanism and the two-resolution scheme of discretization meshes are constructed to avoid terrible structural features and improve smoothness and continuity of boundaries at the interfaces within adjacent subdomains. The separation and independency of the Density Distribution Function (DDF) at each subdomain can offer high flexibility for cellular designs with the imposing of several kinds of periodic constraints. Thirdly, the MP-ITO method is proposed for complex structures and the mathematical formulation for cellular designs considering periodic constraints is developed. Finally, the effectiveness and indispensability of the local smoothing mechanism and the two-resolution scheme in the MP-ITO are discussed, and several numerical examples are addressed to present the compelling effectiveness and capabilities of the MP-ITO method with the high flexibility on the designs of periodic and graded cellular structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call