Abstract

Abstract The low yield and poor fuel properties of bio-oil have made the pyrolysis production process uneconomic and also limited bio-oil usage. Proper manipulation of key pyrolysis variables is paramount in order to produce high-quality bio-oil that requires less upgrading. In this research, the pyrolysis of pig hair was carried out in a fixed-bed reactor using a calcium oxide catalyst derived from calcination of turtle shells. In the pyrolysis process, the influence of three variables—temperature, heating rate and catalyst weight—on two responses—bio-oil yield and its higher heating value (HHV)—were investigated using Response Surface Methodology. A second-order regression-model equation was obtained for each response. The optimum yield of the bio-oil and its HHV were obtained as 51.03% and 21.87 mJ/kg, respectively, at 545oC, 45.17oC/min and 2.504 g of pyrolysis temperature, heating rate and catalyst weight, respectively. The high R2 values of 0.9859 and 0.9527, respectively, obtained for the bio-oil yield and its HHV models using analysis of variance revealed that the models can adequately predict the bio-oil yield and its HHV from the pyrolysis process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.