Abstract
To assess the predictive ability of a multi-parametric MRI-based radiomics signature (RS) for the preoperative evaluation of Ki-67 proliferation status in sinonasal malignancies. A total of 128 patients with sinonasal malignancies that underwent multi-parametric MRIs at two medical centres were retrospectively analysed. Data from one medical centre (n = 77) were used to develop the predictive models and data from the other medical centre (n = 51) constitute the test dataset. Clinical data and conventional MRI findings were reviewed to identify significant predictors. Radiomics features were determined using maximum relevance minimum redundancy and least absolute shrinkage and selection operator algorithms. Subsequently, RSs were established using a logistic regression (LR) algorithm. The predictive performance of RSs was assessed using calibration, decision curve analysis (DCA), accuracy, and AUC. No independent predictors of high Ki-67 proliferation were observed based on clinical data and conventional MRI findings. RS-T1, RS-T2, and RS-T1c (contrast enhancement T1WI) were established based on a single-parametric MRI. RS-Combined (combining T1WI, FS-T2WI, and T1c features) was developed based on multi-parametric MRI and achieved an AUC and accuracy of 0.852 (0.733-0.971) and 86.3%, respectively, on the test dataset. The calibration curve and DCA demonstrated an improved fitness and benefits in clinical practice. A multi-parametric MRI-based RS may be used as a non-invasive, dependable, and accurate tool for preoperative evaluation of the Ki-67 proliferation status to overcome the sampling bias in sinonasal malignancies. • Multi-parametric MRI-based radiomics signatures (RSs) are used to preoperatively evaluate the proliferation status of Ki-67 in sinonasal malignancies. • Radiomics features are determined using maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms. • RSs are established using a logistic regression (LR) algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.