Abstract

Accurate prediction of driving behaviour is essential for an active safety system to ensure driver safety. A model for predicting lane-changing behaviour is developed from the results of naturalistic on-road experiment for use in a lane-changing assistance system. Lane changing intent time window is determined via visual characteristics extraction of rearview mirrors. A prediction index system for left lane changes was constructed by considering drivers' visual search behaviours, vehicle operation behaviours, vehicle motion states, and driving conditions. A back-propagation neural network model was developed to predict lane-changing behaviour. The lane-change-intent time window is approximately 5 s long, depending on the subjects. The proposed model can accurately predict drivers' lane changing behaviour for at least 1.5 s in advance. The accuracy and time series characteristics of the model are superior to the use of turn signals in predicting lane-changing behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.