Abstract

In this paper, the effect on the ultrasonic attenuation of the grain size heterogeneity in polycrystals is analyzed. First, new analytical developments allowing the extension of the unified theory of Stanke and Kino to general grain size distributions are presented. It is then shown that one can additively decompose the attenuation coefficient provided that groups of grains are defined. Second, the study is specialized to a bimodal distribution of the grain size for which microstructures are numerically modeled by means of the software Neper. The additive partition of the attenuation coefficient into contributions coming from large and small grains motivates the derivation of an optimization procedure for characterizing the grain size distribution. The aforementioned approach, which is based on a least squares minimization, is at last presented and illustrated on both analytical and numerical attenuation data. It is thus shown that the method provides satisfying approximations of volume fractions of large grains and modal equivalent diameters from the frequency-dependent attenuation coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call