Abstract

Biological macromolecules undergo dynamic conformational changes. Single-molecule methods can track such structural rearrangements in real time. However, while the structure of large macromolecules may change along many degrees of freedom, single-molecule techniques only monitor a limited number of these axes of motion. Advanced single-molecule methods are being developed to track multiple degrees of freedom in nucleic acids and nucleoprotein complexes at high resolution, to enable better manipulation and control of the system under investigation, and to collect measurements in massively parallel fashion. Combining complementary single-molecule methods within the same assay also provides unique measurement opportunities. Implementations of magnetic and optical tweezers combined with fluorescence and FRET have demonstrated results unattainable by either technique alone. Augmenting other advanced single-molecule methods with fluorescence detection will allow us to better capture the multidimensional dynamics of nucleic acids and nucleoprotein complexes central to biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.