Abstract

The phase cross-correlation function of an optical frequency domain reflectometry (OFDR) system is proposed to detect a multi-point vibration event, which is verified in detail by theoretical simulation and experiment. An OFDR system based on a non-tunable laser source with digital sweep frequency is developed. It is verified experimentally that the location and frequency resolution of multi-point high-frequency vibration can be detected by analyzing the phase cross-correlation function of the sensing signal. High-frequency signals of 50 kHz and 20 kHz are located and separated on the 8 km optical fiber. The frequency resolution is 1.26 kHz, and the minimum spatial error is 11.5 m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.