Abstract
We give an alternative self-contained proof of the homogenization theorem for periodic multi-parameter integrals that was established by the authors. The proof in that paper relies on the so-called compactness method for Γ-convergence, while the one presented here is by direct verification: the candidate to be the limit homogenized functional is first exhibited and the definition of Γ-convergence is then verified. This is done by an extension of bounded gradient sequences using the Acerbi et al. extension theorem from connected sets, and by the adaptation of some localization and blow-up techniques developed by Fonseca and Müller, together with De Giorgi's slicing method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.