Abstract

We consider large-scale industrial computer model calibration, combining multi-output simulation with limited physical observation, involved in the development of a honeycomb seal. Toward that end, we adopt a localized sampling and emulation strategy called “on-site surrogates (OSSs),” designed to cope with the amalgamated challenges of high-dimensional inputs, large-scale simulation campaigns, and nonstationary response surfaces. In previous applications, OSSs were one-at-a-time affairs for multiple outputs leading to dissonance in calibration efforts for a common parameter set across outputs for the honeycomb. We demonstrate that a principal-components representation, adapted from ordinary Gaussian process surrogate modeling to the OSS setting, can resolve this tension. With a two-pronged—optimization and fully Bayesian—approach, we show how pooled information across outputs can reduce uncertainty and enhance efficiency in calibrated parameters and prediction for the honeycomb relative to the previous, “data-poor” univariate analog.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.