Abstract
Hypertension is a multifactorial disease with stage-specific gene expression changes occurring in multiple organs over time. The temporal sequence and the extent of gene regulatory network changes occurring across organs during the development of hypertension remain unresolved. In this study, female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats were used to analyze expression patterns of 96 genes spanning inflammatory, metabolic, sympathetic, fibrotic, and renin-angiotensin (RAS) pathways in five organs, at five time points from the onset to established hypertension. We analyzed this multi-dimensional dataset containing ~15,000 data points and developed a data-driven dynamic network model that accounts for gene regulatory influences within and across visceral organs and multiple brainstem autonomic control regions. We integrated the data from female SHR and WKY with published multiorgan gene expression data from male SHR and WKY. In female SHR, catecholaminergic processes in the adrenal gland showed the earliest gene expression changes prior to inflammation-related gene expression changes in the kidney and liver. Hypertension pathogenesis in male SHR instead manifested early as catecholaminergic gene expression changes in brainstem and kidney, followed by an upregulation of inflammation-related genes in liver. RAS-related gene expression from the kidney-liver-lung axis was downregulated and intra-adrenal RAS was upregulated in female SHR, whereas the opposite pattern of gene regulation was observed in male SHR. We identified disease-specific and sex-specific differences in regulatory interactions within and across organs. The inferred multi-organ network model suggests a diminished influence of central autonomic neural circuits over multi-organ gene expression changes in female SHR. Our results point to the gene regulatory influence of the adrenal gland on spleen in female SHR, as compared to brainstem influence on kidney in male SHR. Our integrated molecular profiling and network modeling identified a stage-specific, sex-dependent, multi-organ cascade of gene regulation during the development of hypertension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.