Abstract

Semantic segmentation of ultrasound (US) images with deep learning has played a crucial role in computer-aided disease screening, diagnosis and prognosis. However, due to the scarcity of US images and small field of view, resulting segmentation models are tailored for a specific single organ and may lack robustness, overlooking correlations among anatomical structures of multiple organs. To address these challenges, we propose the Multi-Organ FOundation (MOFO) model for universal US image segmentation. The MOFO is optimized jointly from multiple organs across various anatomical regions to overcome the data scarcity and explore correlations between multiple organs. The MOFO extracts organ-invariant representations from US images. Simultaneously, the task prompt is employed to refine organ-specific representations for segmentation predictions. Moreover, the anatomical prior is incorporated to enhance the consistency of the anatomical structures. A multi-organ US database, comprising 7039 images from 10 organs across various regions of the human body, has been established to evaluate our model. Results demonstrate that the MOFO outperforms single-organ methods in terms of the Dice coefficient, 95% Hausdorff distance and average symmetric surface distance with statistically sufficient margins. Our experiments in multi-organ universal segmentation for US images serve as a pioneering exploration of improving segmentation performance by leveraging semantic and anatomical relationships within US images of multiple organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.