Abstract

Anlotinib, an orally administered small molecule inhibitor of receptor tyrosine kinases (RTKs), exerts significant anti-angiogenic and vascular normalization effects. However, the mechanisms underlying its involvement in tumor metabolic reprogramming are still unclear. This study aims to investigate the distribution and expression levels of metabolites within tumors after anlotinib treatment using spatial metabolomics analysis. Subsequently, by integrating the transcriptomics and proteomics analyses, we identified that anlotinib treatment primarily modulated four metabolic pathways, including taurine and hypotaurine metabolism, steroid synthesis, pentose phosphate pathway, and lipid biosynthesis. This regulation significantly influenced the metabolic levels of compounds such as sulfonic acids, cholesterol, inositol phosphate pyrophosphate, and palmitoyl-CoA in the tumor, thereby impacting tumor initiation and progression. This study provides potential metabolic biomarkers for anlotinib treatment in tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.