Abstract

Type 2 diabetes is one of the leading threats to human health in the 21st century. It is a metabolic disorder characterized by a dysregulated glucose metabolism resulting from impaired insulin secretion or insulin resistance. More recently, accumulated epidemiological and animal model studies have confirmed that circadian dysfunction caused by shift work, late meal timing, and sleep loss leads to type 2 diabetes. Circadian rhythms, 24-h endogenous biological oscillations, are a fundamental feature of nearly all organisms and control many physiological and cellular functions. In mammals, light synchronizes brain clocks and feeding is a main stimulus that synchronizes the peripheral clocks in metabolic tissues, such as liver, pancreas, muscles, and adipose tissues. Circadian arrhythmia causes the loss of synchrony of the clocks of these metabolic tissues and leads to an impaired pancreas β-cell metabolism coupled with altered insulin secretion. In addition to these, gut microbes and circadian rhythms are intertwined via metabolic regulation. Omics approaches play a significant role in unraveling how a disrupted circadian metabolism causes type 2 diabetes. In the present review, we emphasize the discoveries of several genes, proteins, and metabolites that contribute to the emergence of type 2 diabetes mellitus (T2D). The implications of these discoveries for comprehending the circadian clock network in T2D may lead to new therapeutic solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.