Abstract

Acute kidney injury (AKI) is a common clinical syndrome associated with high morbidity and mortality. Inhibition of the methyltransferase enhancer of zeste homolog 2 (EZH2) by its inhibitor 3-deazaneplanocin A (3-DZNeP) exerts renal benefits in acute renal ischemia-reperfusion injury (IRI). However, the underlying mechanisms are not completely known. This study aimed to elucidate the pathological mechanism of EZH2 in renal IRI by combination of multi-omics analysis and expression profiling in a public clinical cohort. In this study, C57BL/6 J mice were used to establish the AKI model, which were treated with 3-DZNeP for 24 h. Kidney samples were collected for RNA-seq analysis, which was combined with publicly available EZH2 chromatin immunoprecipitation sequencing (ChIP-seq) data of mouse embryonic stem cell for a joint analysis to identify differentially expressed genes. Several selected differentially expressed genes were verified by quantitative PCR. Finally, single-nucleus sequencing data and expression profiling in public clinical datasets were used to confirm the negative correlation of the selected genes with EZH2 expression. 3-DZNeP treatment significantly improved renal pathology and function in IRI mice. Through RNA-seq analysis combined with EZH2 ChIP-seq database, 162 differentially expressed genes were found, which might be involved in EZH2-mediated pathology in IRI kidneys. Four differential expressed genes (Scd1, Cidea, Ghr, and Kl) related to lipid metabolism or cell growth were selected based on Gene Ontology and Kyoto Encyclopedia of Genes and Genome enrichment analysis, which were validated by quantitative PCR. Data from single-nucleus RNA sequencing revealed the negative correlation of these four genes with Ezh2 expression in different subpopulations of proximal tubular cells in IRI mice in a different pattern. Finally, the negative correlation of these four genes with EZH2 expression was confirmed in patients with AKI in two clinical datasets. Our study indicates that Scd1, Cidea, Ghr, and Kl are downstream genes regulated by EZH2 in AKI. Upregulation of EZH2 in AKI inhibits the expression of these four genes in a different population of proximal tubular cells to minimize normal physiological function and promote acute or chronic cell injuries following AKI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call