Abstract

Magnesium (Mg) plays a pivotal role as an essential component of plant chlorophyll and functions as a critical coenzyme. However, research exploring the regulatory mechanisms of magnesium ions on the synthesis of secondary metabolites is still in its early stages. Sophora tonkinensis is a widely utilized medicinal plant in China, recognized for its diverse secondary metabolites with active properties. This study investigates variations in these ingredients in tissue-cultured seedlings under varying magnesium concentrations. Simultaneously, an omics data analysis was conducted on tissue-cultured seedlings subjected to treatments with magnesium and low magnesium. These comprehensive omics analyses aimed to elucidate the mechanisms through which magnesium influences active components, growth, and development. Magnesium exerts a pervasive influence on various metabolic pathways, forming an intricate network. Research findings indicate that magnesium impacts diverse metabolic processes, including the absorption of potassium and calcium, as well as photosynthetic activity. Consequently, these influences lead to discernible changes in the levels of pharmacologically active compounds and the growth and developmental status.This study is the first to employ a multi-omics data analysis in S. tonkinensis. This methodology allows us to uncover the overarching impact of metabolic networks on the levels of various active ingredients and specific phenotypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.