Abstract

Polyvinyl chloride microplastics (PVC-MPs) are microplastic pollutants widely present in the environment, but their potential risks to human lung health and underlying toxicity mechanisms remain unknown. In this study, we systematically analyzed the effects of PVC-MPs on the transcriptome and metabolome of BEAS-2B cells using high-throughput RNA sequencing and untargeted metabolomics technologies. The results showed that exposure to PVC-MPs significantly reduced the viability of BEAS-2B cells, leading to the differential expression of 530 genes and 3768 metabolites. Further bioinformatics analyses showed that PVC-MP exposure influenced the expression of genes associated with fluid shear stress, the MAPK and TGF-β signaling pathways, and the levels of metabolites associated with amino acid metabolism. In particular, integrated pathway analysis showed that lipid metabolic pathways (including glycerophospholipid metabolism, glycerolipid metabolism, and sphingolipid metabolism) were significantly perturbed in BEAS-2B cells following PVC-MPs exposure. This study provides new insights and targets for a deeper understanding of the toxicity mechanism of PVC-MPs and for the prevention and treatment of PVC-MP-associated lung diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.