Abstract

Enhancer can transcribe RNAs, however, most of them were neglected in traditional RNA-seq analysis workflow. Here, we developed a Pipeline for Enhancer Transcription (PET, http://fun-science.club/PET) for quantifying enhancer RNAs (eRNAs) from RNA-seq. By applying this pipeline on lung cancer samples and cell lines, we showed that the transcribed enhancers are enriched with histone marks and transcription factor motifs (JUNB, Hand1-Tcf3 and GATA4). By training a machine learning model, we demonstrate that enhancers can predict prognosis better than their nearby genes. Integrating the Hi-C, ChIP-seq and RNA-seq data, we observe that transcribed enhancers associate with cancer hallmarks or oncogenes, among which LcsMYC-1 (Lung cancer-specific MYC eRNA-1) potentially supports MYC expression. Surprisingly, a significant proportion of transcribed enhancers contain small protein-coding open reading frames (sORFs) and can be translated into microproteins. Our study provides a computational method for eRNA quantification and deepens our understandings of the DNA, RNA and protein nature of enhancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.