Abstract

Glioblastoma (GBM) is the most common and aggressive malignant brain tumor with poor prognosis. Temozolomide (TMZ) is the standard chemotherapy for glioblastoma treatment, but TMZ resistance significantly compromises its efficacy. In the present study, we generated a TMZ-resistant cell line and identified that mitochondrial dysfunction was a novel factor contributing to TMZ resistance though multi-omics analyses and energy metabolism analysis. Furthermore, we found that rotenone treatment induced TMZ resistance to a certain level in glioblastoma cells. Notably, we further demonstrated that elevated Ca2+ levels and JNK-STAT3 pathway activation contributed to TMZ resistance and that inhibiting JNK or STAT3 increases susceptibility to TMZ. Taken together, our results indicate that co-administering TMZ with a JNK or STAT3 inhibitor holds promise as a potentially effective treatment for glioblastoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call