Abstract

BackgroundCystic fibrosis (CF) is characterized by chronic inflammation and excessive cytokines secretion in the lung. Isogenic human CF bronchial epithelial (CFBE41o-) cell lines stably expressing wt-CFTR (WTBE) or F508del mutant (CFBE) are widely used tools in understanding responses to stimuli or drugs and CF pathogenesis in vitro. However, the intrinsic cellular differences in culture are unknown. MethodsWe performed integrative analyses of these isogenic cells at the protein, mRNA, and chromatin levels in the submerged and air-liquid interface (ALI) conditions to determine cell intrinsic effects of mutant versus complemented CFTR expression. ResultsCFBE and WTBE cells displayed different cytokine secretion patterns, including IL-6, IL-8, CXCL1, CXCL10, and CCL5. The ALI culture dramatically increased cytokine secretion in both cells. Assay for transposase-accessible chromatin using sequencing (ATAC-seq) result showed different chromatin landscapes upon polarization and CFBE cells, compared to WTBE cells, exhibited higher genome-wide chromatin accessibility under both culture methods. At the transcriptome level, differentially expressed genes identified by mRNA sequencing between two cell lines were highly concentrated in immunity-related pathways. ConclusionsThis multilayered study shows that expression of wild-type CFTR has an epithelial cell intrinsic effect on the cell's epigenome and transcriptome particularly in immunity relevant activities. These data will serve as a resource for the CF community and may serve as epithelial biomarkers for CFTR mRNA therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call