Abstract
Nitrogen fertilization is a major force in global greenhouse gases emissions and causes environmental contamination through nitrate leaching. The use of nitrification inhibitors has been proven successful to mitigate these effects. However, there is an increasing concern about the undesired effects that their potential persistence in the soil or accumulation in plants may provoke. In this study, we first exposed Lotus japonicus plants to high amounts of 3,4 dimethylpyrazole phosphate (DMPP) and 2-(N-3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) nitrification inhibitors. Exposure to doses higher than 1 mg·L−1 provoked DMPP accumulation mostly in the aerial part, while DMPSA was only detected from 10 mg·L−1 and nearly no translocation. To evaluate the effect that DMPP accumulation in leaves may provoke on plant performance we combined a transcriptome, proteome, and physiological analysis in plants treated with 10 mg/ L of DMPP. This treatment provoked changes in the expression of 229 genes and 59 proteins. Overall, we evidence that when DMPP accumulates in leaves it induces stress responses, notably provoking changes in cell redox balance, hormone signaling, protein synthesis and turnover and carbon and nitrogen metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.