Abstract
Design of smart navigation for visually impaired/blind people is a hindering task. Existing researchers analyzed it in either indoor or outdoor environment and also it's failed to focus on optimum route selection, latency minimization and multi-obstacle presence. In order to overcome these challenges and to provide precise assistance to visually impaired people, this paper proposes smart navigation system for visually impaired people based on both image and sensor outputs of the smart wearable. The proposed approach involves the upcoming processes: (i) the input query of the visually impaired people (users) is improved by the query processor in order to achieve accurate assistance. (ii) The safest route from source to destination is provided by implementing Environment aware Bald Eagle Search Optimization algorithm in which multiple routes are identified and classified into three different classes from which the safest route is suggested to the users. (iii) The concept of fog computing is leveraged and the optimal fog node is selected in order to minimize the latency. The fog node selection is executed by using Nearest Grey Absolute Decision Making Algorithm based on multiple parameters. (iv) The retrieval of relevant information is performed by means of computing Euclidean distance between the reference and database information. (v) The multi-obstacle detection is carried out by YOLOv3 Tiny in which both the static and dynamic obstacles are classified into small, medium and large obstacles. (vi) The decision upon navigation is provided by implementing Adaptive Asynchronous Advantage Actor-Critic (A3C) algorithm based on fusion of both image and sensor outputs. (vii) Management of heterogeneous is carried out by predicting and pruning the fault data in the sensor output by minimum distance based extended kalman filter for better accuracy and clustering the similar information by implementing Spatial-Temporal Optics Clustering Algorithm to reduce complexity. The proposed model is implemented in NS 3.26 and the results proved that it outperforms other existing works in terms of obstacle detection and task completion time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.