Abstract
Utilizing renewable sources integrated with thermodynamic cycles has been gaining attention in recent years due to being economical and environment-friendly, among which, renewable-energy driven water and power generation systems have shown promising outcomes. In the field of renewable-energy based multi-generation systems (MGS), many recent works have focused on energy analysis or simple optimization. Therefore, in this study, an off-grid solar-geothermal cogeneration system which is able to produce power by Kalina cycle, hydrogen by proton exchange membrane electrolyzer (PEMEC), and freshwater by a multi-effect desalination (MED) unit, was investigated and optimized in terms of economic and energy viewpoints. Unlike previous studies, in this work, a comprehensive multi-objective optimization (MOO) was employed on the system in order to find the optimal working condition. The decision variables of the optimization include flat plate collector area, water mass flow, and ammonia concentration of the Kalina cycle, and the objective functions were levelized cost of electricity (LCOE), payback period (PBP), the overall energy efficiency of the system, and freshwater production of MED unit. Final results show that the system, in its optimum condition, is able to produce 182.09 m3.day−1 fresh water, with energy efficiency, PBP, and LCOE equal to 6.23%, 5.19 years and 0.238 $.kWh−1, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.