Abstract
Motivated by the multiple benefits of recycling plastic ingredients in cementitious materials, the present study focuses on the design of sustainable cement concrete incorporating recycled mixed plastic fine aggregate (MPFA) as a partial replacement of natural sand (NS). The MPFA produced in this work is composed of a combination of polymer types with similar concoctions to those observed in the postconsumer waste streams. This study approach is vastly different from past reported studies on the use of sorted, highly purified single-type recycled plastic aggregate in cement concrete. A multi-criteria decision-making technique, Best-Worst Method (BWM), was integrated with the Taguchi method to maximize the quality of MPFA concrete based on the Fuller–Thompson theory. More specifically, an L9 (34) Taguchi orthogonal array with four three-level design factors was adopted to optimize the fresh, durability, and mechanical properties of MPFA concrete. The results showed that MPFA concrete produced with 400 kg/m3 cement content, 0.43 water/cement ratio, 0.43 fine aggregate/total aggregate ratio, and 10 vol% MPFA content exhibited the highest quality. Findings from the present work also revealed that MPFA concrete produced with tailored particle size distribution of MPFA NS fine aggregate system achieved superior, if not comparable, qualities to those of conventional concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.