Abstract

The Yellow River, a critical water resource, faces challenges stemming from increasing water demand, which has led to detrimental effects on hydropower generation and ecological balance. This paper will address the complex task of balancing the interests of hydropower generation, water supply, and ecology within the context of cascade reservoirs, specifically Longyangxia and Liujiaxia reservoirs. Employing a systemic coupling coordination approach, we constructed a multi-objective synergetic model of the upper Yellow River in order to explore synergies and competitions among multiple objectives. The results reveal that there is a weak competitive relationship between hydropower generation and water supply, a strong synergy between hydropower generation and ecology, and a strong competitive relationship between water supply and ecology. The Pareto solution set analysis indicates a considerable percentage (59%, 20%, and 8% in wet, normal, and dry years, respectively) exhibiting excellent coordination. The probability of excellent coordination decreases with diminishing inflow. The optimization scheme with the highest coupling coordination demonstrates significant improvements in power generation, water supply, and ecological benefits in the upper Yellow River without compromising other objectives, fostering the sustainable operation of hydropower generation, water supply, and ecology in the upper Yellow River.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call